Works Cited
1. U.S. Environmental Protection Agency (EPA). Reregistration Eligibility Decision (RED) for Permethrin. Office of Pesticide Programs, April 2006. https://archive.epa.gov/pesticides/reregistration/web/pdf/permethrin_red.pdf
2. Proctor SP, Maule AL, Heaton KJ, Cadarette BS, Guerriere KI, Haven CC, Taylor KM, Scarpaci MM, Ospina M, Calafat AM. Permethrin exposure from wearing fabric-treated military uniforms in high heat conditions under varying wear-time scenarios. J Expo Sci Environ Epidemiol. 2020 May;30(3):525-536. doi: 10.1038/s41370-019-0120-y. Epub 2019 Feb 6. PMID: 30728486; PMCID: PMC7971189. https://pubmed.ncbi.nlm.nih.gov/30728486/
3. Proctor SP, Nguyen VT, Hebert AA, Taylor KM, McClung HL, Heaton KJ, Ospina M, Calafat AM. Individual-level permethrin exposure biomarkers in U.S. army soldiers: comparison of two treatment formulations for military uniforms. J Expo Sci Environ Epidemiol. 2023 Jan;33(1):132-139. doi: 10.1038/s41370-022-00466-1. Epub 2022 Aug 23. PMID: 35999257; PMCID: PMC10140735. https://pubmed.ncbi.nlm.nih.gov/35999257/
4. Armed Forces Pest Management Board. Technical Guide 36: Personal Protective Measures Against Insects and Other Arthropods of Military Significance.
https://phc.amedd.army.mil/topics/envirohealth/epm/Pages/DoDInsectRepellentSystem.aspx
5. World Health Organization and Food and Agriculture Organization. Pesticide Residues in Food: Evaluations 2000, Part II – Toxicological. Geneva: WHO, 2001.
https://inchem.org/documents/jmpr/jmpmono/v00pr07.htm
6. Mavaie, Pegah, Lawrence Holder, and Michael Skinner. “Identifying Unique Exposure-Specific Transgenerational Differential DNA Methylated Region Epimutations in the Genome Using Hybrid Deep Learning Prediction Models.” Environmental Epigenetics 9, no. 1 (2023): dvad007.
https://doi.org/10.1093/eep/dvad007
7. Thorson, J.L.M., et al. “Epigenome-Wide Association Study for Pesticide (Permethrin and DEET) Induced DNA Methylation Epimutation Biomarkers for Specific Transgenerational Disease.” Environmental Health 19, no. 1 (2020): 109.
https://doi.org/10.1186/s12940-020-00666-y
https://inchem.org/documents/jmpr/jmpmono/v00pr07.htm
8. Justice Department. “Justice Department Files False Claims Act Complaint Against Insect Shield LLC and Its Founder.” United States Department of Justice, December 15, 2023.
Press Release Number: 23-1433
​
9. Insect Shield Company Background.
https://www.insectshield.com/pages/company-background
10. https://ctdbase.org/detail.go?type=chem&acc=D026023&view=disease
1600+ diseases associated with permethrin toxicity to include gulf war syndromes.
11. Nearly 2k Genes which Permethrin interacts with.
https://ctdbase.org/detail.go?type=chem&acc=D026023
12. Blanc M, Antczak P, Cousin X, Grunau C, Scherbak N, Rüegg J, Keiter SH. The insecticide permethrin induces transgenerational behavioral changes linked to transcriptomic and epigenetic alterations in zebrafish (Danio rerio). Sci Total Environ. 2021 Jul 20;779:146404. doi: 10.1016/j.scitotenv.2021.146404. Epub 2021 Mar 17. PMID: 33752003.
13. Bordoni, L., et al. “Intergenerational Effect of Early Life Exposure to Permethrin.” Toxics 3, no. 4 (2015): 451–461. https://doi.org/10.3390/toxics3040451.
14. Manikkam, M., et al. “Pesticide and Insect Repellent Mixture (Permethrin and DEET) Induces Epigenetic Transgenerational Inheritance of Disease and Sperm Epimutations.” Reproductive Toxicology 34, no. 4 (2012): 708–719. https://doi.org/10.1016/j.reprotox.2012.08.010.
15. McNew SM, Boquete MT, Espinoza-Ulloa S, Andres JA, Wagemaker NCAM, Knutie SA, Richards CL, Clayton DH. Epigenetic effects of parasites and pesticides on captive and wild nestling birds. Ecol Evol. 2021 May 3;11(12):7713–7729. doi: 10.1002/ece3.7606. PMID: 34188846; PMCID: PMC8216931.
16. Thorson JLM, Beck D, Ben Maamar M, Nilsson EE, Skinner MK. Epigenome-wide association study for pesticide (Permethrin and DEET) induced DNA methylation epimutation biomarkers for specific transgenerational disease. Environ Health. 2020 Nov 4;19(1):109. doi: 10.1186/s12940-020-00666-y. PMID: 33148267; PMCID: PMC7643320. https://pubmed.ncbi.nlm.nih.gov/33148267/
17. Yan, S., et al. “Exposure to N,N-diethyl-m-toluamide (DEET) and Cardiovascular Risks: A Systematic Review of Experimental and Epidemiological Data.” Frontiers in Public Health 10 (2022): 922005. https://doi.org/10.3389/fpubh.2022.922005.
18. Shetty, G. A., et al. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness. Frontiers in Molecular Neuroscience 10 (2017). https://doi.org/10.3389/fnmol.2017.00182.
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00182/full
19. Agency for Toxic Substances and Disease Registry (ATSDR). DEET (N,N-Diethylmeta-Toluamide) Toxicology Profile. U.S. Department of Health & Human Services, 2014. https://www.atsdr.cdc.gov/toxprofiles/tp185.pdf
​
20. López-Aceves, T. G., et al. Exposure to Sub-Lethal Doses of Permethrin Is Associated with Neurotoxicity: Changes in Bioenergetics, Redox Markers, Neuroinflammation and Morphology. Toxics. 2021 Dec; 9(12): 337. doi: 10.3390/toxics9120337. PMCID: PMC8704605. PMID: 34941771. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704605/
21. Sun, Y.-J., et al. Long-Term Low-Dose Exposure of Permethrin Induces Liver and Kidney Damage in Rats. BMC Pharmacology and Toxicology (2022) 23:46. https://doi.org/10.1186/s40360-022-00586-2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270817/
22. Dhivya Vadhana, M. S., et al. Early Life Permethrin Treatment Leads to Long-Term Cardiotoxicity. Chemosphere.2013 Oct;93(6):1029–34. doi: 10.1016/j.chemosphere.2013.05.073.
https://pubmed.ncbi.nlm.nih.gov/23806482/
https://www.sciencedirect.com/science/article/abs/pii/S0045653513008199
23. Carloni, M., et al. Early Life Permethrin Exposure Induces Long-Term Brain Changes in Nurr1, NF-kB and Nrf-2. Brain Research. 2013 Jun 17;1515:19–28. doi: 10.1016/j.brainres.2013.03.048. https://pubmed.ncbi.nlm.nih.gov/23566817/
​
24. Mavaie, P., et al. "Identifying Unique Exposure-Specific Transgenerational Epimutations Following DEET and Permethrin Exposure." Environmental Epigenetics 9, no. 2 (2023): dvad007
​
25. Pegah Mavaie, Lawrence Holder, Michael Skinner, Identifying unique exposure-specific transgenerational differentially DNA methylated region epimutations in the genome using hybrid deep learning prediction models, Environmental Epigenetics, Volume 9, Issue 1, 2023, dvad007, https://doi.org/10.1093/eep/dvad007
​
26. Skinner, M. K., et al. "Alterations in Sperm DNA Methylation, Non-Coding RNA, and Epigenetic Biomarkers Following Environmental Exposures." Epigenetics & Chromatin 11, no. 2 (2018): 1-15. https://doi.org/10.1186/s13072-018-0238-5.
27. Shin, Nara et al. Altered gene expression linked to germline dysfunction following exposure of Caenorhabditis elegans to DEET. iScience, Volume 27, Issue 1, 108699 https://www.cell.com/iscience/fulltext/S2589-0042(23)02776-1
28. Mavaie, P., Holder, L., Beck, D. et al. Predicting environmentally responsive transgenerational differential DNA methylated regions (epimutations) in the genome using a hybrid deep-machine learning approach. BMC Bioinformatics 22, 575 (2021). https://doi.org/10.1186/s12859-021-04491-z
29. Navarrete-Meneses MDP, Salas-Labadía C, Juárez-Velázquez MDR, Moreno-Lorenzana D, Gómez-Chávez F, Olaya-Vargas A, Pérez-Vera P. Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259. PMID: 37047231; PMCID: PMC10094043.
30. Shin, N., et al. "Altered Gene Expression Linked to Germline Dysfunction Following DEET and Permethrin Exposure." ScienceDirect, 2024. https://doi.org/10.1016/j.toxlet.2023.107115.
31. Tompkins JD. Transgenerational Epigenetic DNA Methylation Editing and Human Disease. Biomolecules. 2023 Nov 22;13(12):1684. doi: 10.3390/biom13121684. PMID: 38136557; PMCID: PMC10742326. https://pubmed.ncbi.nlm.nih.gov/38136557/
32. Dijendra Nath Roy, Ritobrata Goswami, Ayantika Pal, The insect repellents: A silent environmental chemical toxicant to the health, Environmental Toxicology and Pharmacology, Volume 50, 2017, Pages 91-102, ISSN 1382-6689, https://doi.org/10.1016/j.etap.2017.01.019. https://www.sciencedirect.com/science/article/pii/S1382668917300285
33. Dunlap, K. D., et al. "The Role of Epigenetics in Neurological Disorders Following Permethrin Exposure." Journal of Neuroscience Research 98, no. 6 (2023): 891-905.
34. Laura Bordoni, Cinzia Nasuti, Donatella Fedeli, Roberta Galeazzi, Emiliano Laudadio, Luca Massaccesi, Gerardo López-Rodas, Rosita Gabbianelli, Early impairment of epigenetic pattern in neurodegeneration: Additional mechanisms behind pyrethroid toxicity, Experimental Gerontology, Volume 124, 2019, 110629, ISSN 0531-5565, https://doi.org/10.1016/j.exger.2019.06.002.
https://www.sciencedirect.com/science/article/abs/pii/S053155651930052X
35. National Institute of Environmental Health Sciences (NIEHS). Exposure to DEET and Permethrin Mixtures: Implications for Gulf War Illness. 2024. https://www.niehs.nih.gov.
36. Armed Forces Pest Management Board. Technical Guide No. 36: Permethrin Treated Military Uniforms—Toxicity and Exposure Risks. U.S. Department of Defense, 2023.
37. Department of Veterans Affairs. Health Effects of Permethrin and DEET Exposure in Gulf War Veterans. 2022.
38. Department of Veterans Affairs. Health Effects of Permethrin and DEET Exposure in Gulf War Veterans. 2022.
39. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013 Jun;19(6):704-12. doi: 10.1038/nm.3143. Epub 2013 May 19. PMID: 23685840; PMCID: PMC3676689. https://pmc.ncbi.nlm.nih.gov/articles/PMC3676689 /
40. Finsterer, J., & Mahjoub, S. Z. (2013). Fatigue in healthy and diseased individuals. American Journal of Hospice and Palliative Medicine, 30(5), 505–514. https://doi.org/10.1177/1049909113494748https://journals.sagepub.com/doi/10.1177/1049909113494748
41. Adhihetty PJ, Uguccioni G, Leick L, Hidalgo J, Pilegaard H, Hood DA. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle. Am J Physiol Cell Physiol. 2009 Jul;297(1):C217-25. doi: 10.1152/ajpcell.00070.2009. Epub 2009 May 13. PMID: 19439529.https://journals.physiology.org/doi/full/10.1152/ajpcell.00070.2009?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
42. O'Sullivan, P. B., Caneiro, J. P., O'Keeffe, M., Smith, A., Dankaerts, W., Fersum, K., & O'Sullivan, K. (2018). Cognitive functional therapy: An integrated behavioral approach for the targeted management of disabling low back pain. Physical Therapy, 98(5), 408-423. https://doi.org/10.1093/ptj/pzy022
43. Corr M. Wnt signaling in ankylosing spondylitis. Clin Rheumatol. 2014 Jun;33(6):759-62. doi: 10.1007/s10067-014-2663-6. Epub 2014 May 13. PMID: 24820146. https://pubmed.ncbi.nlm.nih.gov/24820146/
44. Hoffman, Jessica F., and John F. Kalinich. 2020. "Effects of Incubation of Human Brain Microvascular Endothelial Cells and Astrocytes with Pyridostigmine Bromide, DEET, or Permethrin in the Absence or Presence of Metal Salts" International Journal of Environmental Research and Public Health 17, no. 22: 8336. https://doi.org/10.3390/ijerph17228336 https://www.mdpi.com/1660-4601/17/22/8336
45. Fang, T., Wang, M., Xiao, H. et al. Mitochondrial dysfunction and chronic lung disease. Cell Biol Toxicol 35, 493–502 (2019). https://doi.org/10.1007/s10565-019-09473-9 https://link.springer.com/article/10.1007/s10565-019-09473-9#citeas
46. Morris, D.P. Bacterial biofilm in upper respiratory tract infections. Curr Infect Dis Rep 9, 186–192 (2007). https://doi.org/10.1007/s11908-007-0030-3 https://link.springer.com/article/10.1007/s11908-007-0030-3#citeas
​
47. McNew, Sarah M., Maria T. Boquete, Sebastian Espinoza-Ulloa, et al. “Epigenetic Effects of Parasites and Pesticides on Captive and Wild Nestling Birds.” Ecology and Evolution 11, no. 12 (2021): 7713–7729.https://doi.org/10.1002/ece3.7606. https://onlinelibrary.wiley.com/doi/10.1002/ece3.7606
​
48.
Shrestha, Srishti, Christine G. Parks, David M. Umbach, Jonathan N. Hodman, Laura E. Beane Freeman, Aaron Blair, and Dale P. Sandler. 2022. “Use of Permethrin and Other Pyrethroids and Mortality in the Agricultural Health Study.” Environmental Health Perspectives. Published online June 10, 2022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368161/
49.
Abdel-Rahman, Ali, Ahok K. Shetty, and Mohammed B. Abou-Donia. 2001. “Sub Chronic Dermal Application of N, N-Diethyl m-Toluamide (DEET) and Permethrin to Adult Rats, Alone or In Combination, Causes Diffuse Neuronal Cell Death and Cytoskeletal Abnormalities in the Cerebral Cortex and the Hippocampus, and Purkinje Neuron Loss in the Cerebellum.” Experimental Neurology. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina. Published online November 2001. https://doi.org/10.1006/exnr.2001.7807. https://www.pubmed.ncbi.nlm.nih.gov/11681848/
50.
Omotoso, Gabriel, Olajumoke Oloyede, Shakirah Lawal, Ismail Gbadamosi, Nafisat Mutholib, Fatimah Abdulsalam, Abdulkabir Bature, Abdulsalam Babalolo, Busola Aveni, and Nathaniel Amedu. 2020. “Permethrin Exposure Affects Neurobehavior and Cellular Characterization in Rats’ Brain.” Environmental Analysis Health and Technology 35 (4): e2020022. Published online December 31, 2020. https://doi.org/10.5620/eaht.2020022. PMCID: PMC7829406. PMID: 33434422
51.
Carloni, Manuel, Cinzia Nasuit, Donatella Fedeli, Maura Montani, M. S. Dhivya Vadhana, Augusto Amici, and Rositi Gabbianelli. 2013. “Early Life Permethrin Exposure Induces Long-Term Brain Changes in Nurr1, NF-κB and Nrf-2.”Brain Research. School of Pharmacy, University of Camerino, Italy. Published online March 2013. https://doi.org/10.1016/j.brainres.2013.03.048. https://pubmed.ncbi.nlm.nih.gov/23566817/
52.
Lopez-Aceves, Teresita Guadalupe, Elvia Coballase-Urrutia, Francisco Estrada-Rojo, America Vanoye-Carlo, Liliana Carmona-Aparicio, Maria Eugenia Hernandez, Jose Pedraza-Chaverri, Luz Navarro, Omar E. Aparicio-Trejo, Armando Perez-Torres, Omar N. Medina-Campos, Daniel Martinez-Fong, Vicente Sanchez-Valle, Noemi Cardenas-Rodriguez, Leticia Granados-Rojas, Evelyn Pulido-Camarillo, Veronica Rodriguez-Mata, and Claudia del R. Leon Sicarios. 2021. “Exposure to Sub-Lethal Doses of Permethrin Is Associated with Neurotoxicity: Changes in Bioenergetics, Redox Markers, Neuroinflammation and Morphology.” Toxics 9 (12): 337. Published online December 6, 2021. https://doi.org/10.3390%2Ftoxics9120337. https://pubmed.ncbi.nlm.nih.gov/34941771
53.
Manikkam, Mohan, Rebecca Tracey, Carlos Guerrero-Bosagna, and Michael K. Skinner. 2012. “Pesticide and Insect Repellent Mixture (Permethrin and DEET) Induces Epigenetic Transgenerational Inheritance of Disease and Sperm Epimutations.” Reproductive Toxicology. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA. Published online September 11, 2012. https://doi.org/10.1016/j.reprotox.2012.08.010. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3513590/. https://pubmed.ncbi.nlm.nih.gov/22975477/
54.
Thorson, Jennifer L. M., Daniel Beck, Milissa Ben Maamar, Eric E. Nilsson, and Michael K. Skinner. 2020. “Epigenome-Wide Association Study for Pesticide (Permethrin and DEET) Induced DNA Methylation Epimutation Biomarkers for Specific Transgenerational Disease.” Environmental Health 19: 109. Center for Reproductive Biology, Washington State University, Pullman, WA. Published online November 4, 2020. https://doi.org/10.1186/s12940-020-00666. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7643320
55.
Mavaie, Pegah, Lawrence Holder, and Michael Skinner. 2023. “Identifying Unique Exposure-Specific Transgenerational Differentially DNA Methylated Region Epimutations in the Genome Using Hybrid Deep Learning Prediction Models.” Environmental Epigenetics 9 (1): 1–13. School of Electrical Engineering and Computer Science, and School of Biological Sciences, Washington State University, Pullman, WA. Published online November 30, 2023. https://doi.org/10.1093/eep/dvad007
56.
Proctor, Susan P., Alexis L. Maule, Kristin J. Heaton, Bruce S. Cadarette, Katelyn I. Guerriere, Caitlin C. Haven, Kathryn M. Taylor, Matthew M. Scarpaci, Maria Ospina, and Antonia M. Calafat. “Permethrin Exposure from Wearing Fabric-Treated Military Uniforms in High Heat under Varying Wear-Time Scenarios.” United States Army Research Institute of Environmental Medicine; VA Boston Healthcare System; Boston University School of Public Health; Henry M. Jackson Foundation; Centers for Disease Control and Prevention.
57.
Lang, Yu-Jie, Pan Wang, Ding-Xin Long, Hui-Ping Wang, Ying-Jian Sun, and Yi-June Wu. 2013. “A Metabonomic Investigation of the Effects of 60 Days Exposure of Rats to Two Types of Pyrethroid Insecticides.” Chemico-Biological Interactions. Published online October 9, 2013. https://doi.org/10.1016/j.cbi.2013.10.002
58.
Liang, Yu-Jie, Pan Wang, Ding-Xin Long, Hui-Ping Wang, Ying-Jian Sun, and Yi-Jun Wu. 2019. “The Progressive Alteration of Urine Metabolomic Profiles of Rats Following Term and Low-Dose Exposure to Permethrin.” Toxicology Mechanisms and Methods. Published online December 1, 2019. https://doi.org/10.1080/1354750X.2019.1697755
59.
Sun, Ying-Jian, Yu-Jie Liang, Lin Yang, Ding-Xin Long, Hui-Ping Wang, and Yi-Jun Wu. 2022. “Long Term Low-Dose Exposure of Permethrin Induces Liver and Kidney Damage in Rats.” BMC Pharmacology and Toxicology. Published online July 7, 2022. https://doi.org/10.1186/s40360-022-00586-2. PMID: 35804463. PMCID: PMC9270817
60.
Delic, Ninoslav. 1998. “Effect of Permethrin on Mitotic Activity of Human Lymphocytes.” Pesticid 13 (3): 233–238. https://chemport-n.cas.org//chemport-n/?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1%3ACAS%3A528%3ADyaK1MXitVCrsg%3D%3D&md5=7042a0f4d9a138eb66094a1258853a66
61.
Shetty, Geetha A., Bharathi Hatiangady, Dinesh Upadhya, Adrian Bates, Sahiti Attaluri, Bing Shuai, Maheedhar Kodali, and Ashok K. Shetty. 2017. “Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness.” Frontiers in Molecular Neuroscience 10. https://doi.org/10.3389/fnmol.2017.00182. https://www.frontiersin.org/articles/10.3389/fnmol.2017.00182/full
62.
Joshia, Utsav, Andrew Pearson, James E. Evans, Heather Langlois, Nicole Saltiel, Joseph Ojo, Nancy Klimas, Kimberly Sullivan, Andrew P. Keegan, Sarah Oberlin, Teresa Darceya, Adam Cseresznye, Balaram Raya, Daniel Paris, Bruce Hammock, Natalia Vasylieva, Surat Hongsibsong, Lawrence J. Stern, Fiona Crawford, Michael Mullan, and Laila Abdullaha. 2019. “A Permethrin Metabolite Is Associated with Adaptive Immune Responses in Gulf War Illness.” Brain, Behavior, and Immunity. Published online July 17, 2019. https://doi.org/10.1016/j.bbi.2019.07.015.https://www.sciencedirect.com/science/article/pii/S0889159119303290
​
63.
Dhivya, M. S., S. Siva Arumugam, Manuel Carloni, Cinzia Nasuti, and Rosita Gabbianelli. 2013. “Early Life Permethrin Treatment Leads to Long-Term Cardiotoxicity.” Chemosphere 93 (6): 1029–1034. Published online June 24, 2013.
https://doi.org/10.1016/j.chemosphere.2013.05.073. https://pubmed.ncbi.nlm.nih.gov/23806482/https://www.sciencedirect.com/science/article/abs/pii/S0045653513008199?via%3Dihub
​
64.
Nguyen, Truyen, Paul Nioi, and Cecil B. Pickett. 2009. “The Nrf2–Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress.” Journal of Biological Chemistry 284 (20): 13291–13295. https://doi.org/10.1074/jbc.R900010200.
PMCID: PMC2679427. PMID: 19182219
65.
Bardaweel, Sanaa K., Mustafa Gul, Muhammad Alzweiri, Aman Ishaqat, Husam A. Alsalamat, and Rasha M. Bashatwah. 2018. “Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body.” Eurasian Journal of Medicine 50 (3): 193–201. https://doi.org/10.5152/eurasianjmed.2018.17397.
PMCID: PMC6263299. PMID: 30515042
​
​
66.
Dhivya, M. S., S. Siva Arumugam, Manuel Carloni, Cinzia Nasuti, and Rosita Gabbianelli. 2013. “Early Life Permethrin Treatment Leads to Long-Term Cardiotoxicity.” Chemosphere 93 (6): 1029–1034. https://doi.org/10.1016/j.chemosphere.2013.05.073.
https://pubmed.ncbi.nlm.nih.gov/23806482/
https://www.sciencedirect.com/science/article/abs/pii/S0045653513008199?via%3Dihub
67.
Nguyen, Truyen, Paul Nioi, and Cecil B. Pickett. 2009. “The Nrf2–Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress.” Journal of Biological Chemistry 284 (20): 13291–13295. https://doi.org/10.1074/jbc.R900010200.
PMCID: PMC2679427. PMID: 19182219
68.
Bardaweel, Sanaa K., Mustafa Gul, Muhammad Alzweiri, Aman Ishaqat, Husam A. Alsalamat, and Rasha M. Bashatwah. 2018. “Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body.” Eurasian Journal of Medicine 50 (3): 193–201. https://doi.org/10.5152/eurasianjmed.2018.17397.
PMCID: PMC6263299. PMID: 30515042
69.
Komiya, Yuko, and Raymond Habas. 2008. “Wnt Signal Transduction Pathways.” Organogenesis 4 (2): 68–75. https://doi.org/10.4161/org.4.2.5851.
PMCID: PMC2634250. PMID: 19279717
70.
SinoBiological. “NF-kB Signaling Pathway.” Accessed 2024. https://www.sinobiological.com/pathways/nf-kb-pathway
71.
LoPachin, Richard M., Brian C. Geohagen, and Lars U. Nordstroem. 2019. “Mechanisms of Soft and Hard Electrophile Toxicities.” Toxicology 418: 62–69. https://doi.org/10.1016/j.tox.2019.02.005.
Published online February 28, 2019.
PMCID: PMC6494464. NIHMSID: NIHMS1523570. PMID: 30826385
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494464/
72.
Tu, Yaqin, Cai Chen, Junru Pan, Junfa Xu, Zhi-Guang Zhou, and Cong-Yi Wang. 2012. “The Ubiquitin Proteasome Pathway (UPP) in the Regulation of Cell Cycle Control and DNA Damage Repair and Its Implications in Tumorigenesis.” International Journal of Clinical and Experimental Pathology 5 (8): 726–738.
PMCID: PMC3466981. PMID: 23071855
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466981/
73.
Sonzogni, Laurène, Mélanie L. Ferlazzo, Adeline Granzotto, Béatrice Fervers, Laurent Charlet, and Nicolas Foray. 2022. “DNA Double-Strand Breaks Induced in Human Cells by 6 Current Pesticides: Intercomparisons and Influence of the ATM Protein.” Biomolecules 12 (2): 250. https://doi.org/10.3390/biom12020250. https://www.mdpi.com/2218-273X/12/2/250
​
74.
Inserm. Effects of Pesticides on Human Health: New Data. Collection Expertise Collective. Montrouge: EDP Sciences, 2022. ISBN 978-2-7598-2721-3. https://doi.org/10.1051/978-2-7598-2721-3
https://www.ipubli.inserm.fr/handle/10608/1
https://www.inserm.fr/expertise-collective/
75.
Rajender, Singh, Kelsey Avery, and Ashok Agarwal. 2011. “Epigenetics, Spermatogenesis and Male Infertility.” Mutation Research/Reviews in Mutation Research 727 (3): 62–71. https://doi.org/10.1016/j.mrrev.2011.04.002
https://www.sciencedirect.com/science/article/pii/S1383574211000081
76.
Van Cauwenbergh, O., A. Di Serafino, J. Tytgat, et al. 2020. “Transgenerational Epigenetic Effects from Male Exposure to Endocrine-Disrupting Compounds: A Systematic Review on Research in Mammals.” Clinical Epigenetics 12: 65. https://doi.org/10.1186/s13148-020-00845-1
https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-020-00845-1
77.
Beck, D., M. Ben Maamar, and M. K. Skinner. 2021. “Integration of Sperm ncRNA-Directed DNA Methylation and DNA Methylation-Directed Histone Retention in Epigenetic Transgenerational Inheritance.” Epigenetics & Chromatin 14: 6. https://doi.org/10.1186/s13072-020-00378-0
https://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-020-00378-0
78.
Ben Maamar, M., Y. Wang, E. E. Nilsson, D. Beck, W. Yan, and M. K. Skinner. 2023. “Transgenerational Sperm DMRs Escape DNA Methylation Erasure during Embryonic Development and Epigenetic Inheritance.” Environmental Epigenetics 9 (1): dvad003. https://doi.org/10.1093/eep/dvad003
PMID: 37346491. PMCID: PMC10281242
https://pubmed.ncbi.nlm.nih.gov/37346491/
79.
Bozzini, B. N., V. T. Nguyen, M. C. Reynoso, et al. 2023. “The Risk of Menstrual Dysfunction Increases for Women during U.S. Army Basic Combat Training.” Medicine & Science in Sports & Exercise 55 (9): 1533–1539. https://doi.org/10.1249/MSS.0000000000003183
PMID: 37057721
https://pubmed.ncbi.nlm.nih.gov/37057721/
80.
Scarpaci, M. M., C. C. Haven, A. L. Maule, et al. 2020. “The Effect of Body Composition and Energy Expenditure on Permethrin Biomarker Concentrations Among US Army National Guard Members.” Journal of Occupational and Environmental Medicine 62 (3): 210–216. https://doi.org/10.1097/JOM.0000000000001801
PMID: 31895734. PMCID: PMC7953413
81.
Mavaie, P., L. Holder, D. Beck, et al. 2021. “Predicting Environmentally Responsive Transgenerational Differential DNA Methylated Regions (Epimutations) in the Genome Using a Hybrid Deep-Machine Learning Approach.” BMC Bioinformatics 22: 575. https://doi.org/10.1186/s12859-021-04491-z
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04491-z
82.
Young, H. A., J. D. Meeker, S. E. Martenies, et al. 2013. “Environmental Exposure to Pyrethroids and Sperm Sex Chromosome Disomy: A Cross-Sectional Study.” Environmental Health 12: 111. https://doi.org/10.1186/1476-069X-12-111
PMID: 24345058. PMCID: PMC3929259
https://pubmed.ncbi.nlm.nih.gov/24345058/
83.
Želježić, D., M. Mladinić, S. Žunec, et al. 2016. “Cytotoxic, Genotoxic and Biochemical Markers of Insecticide Toxicity Evaluated in Human Peripheral Blood Lymphocytes and an HepG2 Cell Line.” Food and Chemical Toxicology 96: 90–106. https://doi.org/10.1016/j.fct.2016.07.036
PMID: 27481072
84.
Corbel, V., M. Stankiewicz, J. Bonnet, et al. 2006. “Synergism Between Insecticides Permethrin and Propoxur Occurs Through Activation of Presynaptic Muscarinic Negative Feedback of Acetylcholine Release in the Insect Central Nervous System.” Neurotoxicology 27 (4): 508–519. https://doi.org/10.1016/j.neuro.2006.01.011
PMID: 16516970
https://pubmed.ncbi.nlm.nih.gov/16516970/
85.
Proctor, S. P., K. J. Heaton, R. F. White, and J. Wolfe. 2001. “Chemical Sensitivity and Chronic Fatigue in Gulf War Veterans: A Brief Report.” Journal of Occupational and Environmental Medicine 43 (3): 259–264. https://doi.org/10.1097/00043764-200103000-00014
PMID: 11285874
https://pubmed.ncbi.nlm.nih.gov/11285874/
86.
Maule, A. L., M. M. Scarpaci, and S. P. Proctor. 2019. “Urinary Concentrations of Permethrin Metabolites in US Army Personnel in Comparison with the US Adult Population, Occupationally Exposed Cohorts, and Other General Populations.” International Journal of Hygiene and Environmental Health 222 (3): 355–363. https://doi.org/10.1016/j.ijheh.2019.02.005
https://www.sciencedirect.com/science/article/pii/S1438463918305959
​
87.
National Academies of Sciences, Engineering, and Medicine. 2018. Gulf War and Health: Volume 11: Generational Health Effects of Serving in the Gulf War. Washington, DC: National Academies Press. https://www.ncbi.nlm.nih.gov/books/NBK535926/
https://doi.org/10.17226/25162
88.
Beyond Pesticides. 2023. “Metabolic Diseases, Including Diabetes and Obesity, Driven by Pesticide Exposure.” Daily News Blog, September 27, 2023. https://beyondpesticides.org/dailynewsblog/2023/09/metabolic-diseases-including-diabetes-and-obesity-driven-by-pesticide-exposure/
89.
Wang, Xu, María-Aránzazu Martínez, Menghong Dai, et al. 2016. “Permethrin-Induced Oxidative Stress and Toxicity and Metabolism: A Review.” Environmental Research 149: 86–104. https://doi.org/10.1016/j.envres.2016.05.003
https://www.sciencedirect.com/science/article/pii/S0013935116301621
90.
[No listed authors]. “Permethrin and Its Metabolites Affect Cu/Zn Superoxide Conformation: Fluorescence and In SilicoEvidences.” Molecular BioSystems. https://doi.org/10.1039/C4MB00491D
91.
Phillips, K. P., and N. Tanphaichitr. 2008. “Human Exposure to Endocrine Disrupters and Semen Quality.” Journal of Toxicology and Environmental Health, Part B 11 (3–4): 188–220. https://doi.org/10.1080/10937400701873472
https://pubmed.ncbi.nlm.nih.gov/18368553/
92.
Gillette, R., M. J. Son, L. Ton, A. C. Gore, and D. Crews. 2018. “Passing Experiences on to Future Generations: Endocrine Disruptors and Transgenerational Inheritance of Epimutations in Brain and Sperm.” Epigenetics 13 (10–11): 1106–1126. https://doi.org/10.1080/15592294.2018.1543506
https://pubmed.ncbi.nlm.nih.gov/30444163/
93.
Manikkam, M., C. Guerrero-Bosagna, R. Tracey, M. M. Haque, and M. K. Skinner. 2012. “Transgenerational Actions of Environmental Compounds on Reproductive Disease and Identification of Epigenetic Biomarkers of Ancestral Exposures.” PLoS ONE 7 (2): e31901. https://doi.org/10.1371/journal.pone.0031901
https://pubmed.ncbi.nlm.nih.gov/22389676/
94.
Sun, Quancai, Ye Peng, Weipeng Qi, et al. 2017. “Permethrin Decreased Insulin-Stimulated AKT Phosphorylation Dependent on Extracellular Signal-Regulated Kinase-1 (ERK), but Not AMP-Activated Protein Kinase α (AMPKα), in C2C12 Myotube.” Food and Chemical Toxicology 109 (Pt 1): 95–101. https://doi.org/10.1016/j.fct.2017.08.046
https://www.sciencedirect.com/science/article/pii/S0278691517305057
95.
Yan, Y., Y. Yang, J. You, et al. 2011. “Permethrin Modulates Cholinergic Mini-Synaptic Currents by Partially Blocking the Calcium Channel.” Toxicology Letters 201 (3): 258–263. https://doi.org/10.1016/j.toxlet.2011.01.009
https://pubmed.ncbi.nlm.nih.gov/21251955/
96.
Anway, M. D., A. S. Cupp, M. Uzumcu, and M. K. Skinner. 2005. “Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility.” Science 308 (5727): 1466–1469. https://doi.org/10.1126/science.1108190
https://pubmed.ncbi.nlm.nih.gov/15933200/
97.
Zamkowska, D., A. Karwacka, J. Jurewicz, and M. Radwan. 2018. “Environmental Exposure to Non-Persistent Endocrine Disrupting Chemicals and Semen Quality: An Overview of the Current Epidemiological Evidence.” International Journal of Occupational Medicine and Environmental Health 31 (4): 377–414. https://doi.org/10.13075/ijomeh.1896.01195
https://pubmed.ncbi.nlm.nih.gov/30160090/
98.
Zhang, S. Y., Y. Ito, O. Yamanoshita, et al. 2007. “Permethrin May Disrupt Testosterone Biosynthesis via Mitochondrial Membrane Damage of Leydig Cells in Adult Male Mouse.” Endocrinology 148 (8): 3941–3949. https://doi.org/10.1210/en.2006-1497
https://pubmed.ncbi.nlm.nih.gov/17463061/
99.
Dhivya Vadhana, M. S., M. Carloni, C. Nasuti, D. Fedeli, and R. Gabbianelli. 2011. “Early Life Permethrin Insecticide Treatment Leads to Heart Damage in Adult Rats.” Experimental Gerontology 46 (9): 731–738. https://doi.org/10.1016/j.exger.2011.05.005
https://www.sciencedirect.com/science/article/pii/S0531556511001252
100.
Wang, XingJia, Chwan-Li Shen, Matthew T. Dyson, et al. 2005. “Cyclooxygenase-2 Regulation of the Age-Related Decline in Testosterone Biosynthesis.” Endocrinology 146 (10): 4202–4208. https://doi.org/10.1210/en.2005-0298
​
101.
Hasegawa, Tomonobu, Liping Zhao, Kathleen M. Caron, Gregor Majdic, Takashi Suzuki, Soichiro Shizawa, Hironobu Sasano, and Keith L. Parker. 2000. “Developmental Roles of the Steroidogenic Acute Regulatory Protein (StAR) as Revealed by StAR Knockout Mice.” Molecular Endocrinology 14 (9): 1462–1471. https://doi.org/10.1210/mend.14.9.0515
102.
Issam, Chargui, Zohra Haouas, Monia Zaouali, and Hassen Ben Cheikh. 2011. “Effects of Dermal Sub-Chronic Exposure of Pubescent Male Rats to Permethrin (PRMT) on the Histological Structures of Genital Tract, Testosterone and Lipoperoxidation.” Experimental and Toxicologic Pathology 63 (4): 393–400. https://doi.org/10.1016/j.etp.2010.02.016
https://www.sciencedirect.com/science/article/pii/S0940299310000333
103.
Taskin, Eylem, Celal Guven, and Yusuf Sevgiler. 2018. “Pyrethroid Insecticides as the Mitochondrial Dysfunction Inducers.” IntechOpen, August 29. https://doi.org/10.5772/intechopen.80283
https://www.intechopen.com/chapters/62948
104.
Yang, Jason S., Steven Symington, John M. Clark, and Yeonhwa Park. 2018. “Permethrin, a Pyrethroid Insecticide, Regulates ERK1/2 Activation Through Membrane Depolarization-Mediated Pathway in HepG2 Hepatocytes.” Food and Chemical Toxicology 121: 387–395. https://doi.org/10.1016/j.fct.2018.09.009
https://www.sciencedirect.com/science/article/pii/S0278691518306537
105.
Heindel, Jerrold J., and Thomas T. Schug. 2014. “The Obesogen Hypothesis: Current Status and Implications for Human Health.” Current Environmental Health Reports 1: 333–340. https://doi.org/10.1007/s40572-014-0026-8
https://link.springer.com/article/10.1007/s40572-014-0026-8
106.
Janulewicz, Patricia A., Maxine H. Krengel, Alexis L. Maule, et al. 2017. “Neuropsychological Characteristics of Gulf War Illness: A Meta-Analysis.” PLoS ONE 12 (5): e0177121. https://doi.org/10.1371/journal.pone.0177121
https://pubmed.ncbi.nlm.nih.gov/28520755/
107.
Yee, Megan K., Clara G. Zundel, Alexis L. Maule, et al. 2020. “Longitudinal Assessment of Health Symptoms in Relation to Neurotoxicant Exposures in 1991 Gulf War Veterans: The Ft. Devens Cohort.” Journal of Occupational and Environmental Medicine 62 (9): 663–668. https://doi.org/10.1097/JOM.0000000000001910
108.
Proctor, Susan P., V. T. Nguyen, A. A. Hebert, et al. 2023. “Individual-Level Permethrin Exposure Biomarkers in U.S. Army Soldiers: Comparison of Two Treatment Formulations for Military Uniforms.” Journal of Exposure Science & Environmental Epidemiology 33: 132–139. https://doi.org/10.1038/s41370-022-00466-1
https://www.nature.com/articles/s41370-022-00466-1
109.
National Academies of Sciences, Engineering, and Medicine. 2018. Gulf War and Health: Volume 11: Generational Health Effects of Serving in the Gulf War. Washington, DC: National Academies Press. PMID: 30629394. https://pubmed.ncbi.nlm.nih.gov/30629394/
110.
U.S. Army Public Health Center. n.d. Permethrin Factory-Treated Army Combat Uniforms (ACU Permethrin). Accessed at: https://ph.health.mil/PHC%20Resource%20Library/ACUPermethrin_FS_18-076-0317.pdf
111.
Department of Defense. 2022. Gulf War Illness Research Program Landscape Report. July 2022. https://cdmrp.health.mil/GWIRP/pdfs/Gulf%20War%20Illness%20Research%20Landscape_2022.pdf
112.
Korolenko, A.A., Noll, S.E., and Skinner, M.K. 2023. “Epigenetic Inheritance and Transgenerational Environmental Justice.” Yale Journal of Biology and Medicine 96 (2): 241–250. https://doi.org/10.59249/FKWS5176
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303257/
113.
Frontiers in Public Health. 2023. “International Perspective on Military Exposure Data Sources, Applications, and Opportunities for Collaboration.” Frontiers in Public Health 11. https://doi.org/10.3389/fpubh.2023.1154595
https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2023.1154595/full
114.
Chiu, Wen-Ta, Shing-Chuan Shen, Jyh-Ming Chow, Cheng-Wei Lin, Ling-Tin Shia, and Yen-Chou Chen. 2010. “Contribution of Reactive Oxygen Species to Migration/Invasion of Human Glioblastoma Cells U87 via ERK-Dependent COX-2/PGE2 Activation.” Neurobiology of Disease 37 (1): 118–129. https://doi.org/10.1016/j.nbd.2009.09.015
https://www.sciencedirect.com/science/article/pii/S0969996109002678
115.
Gould, Douglas J. 2020. BRS: Board Review Series. Neuroanatomy, 6th ed. Philadelphia: Wolters Kluwer.
116.
Splittgerber, Ryan. 2019. Snell’s Clinical Neuroanatomy, 8th ed. Philadelphia: Wolters Kluwer.
117.
Jankovic, Joseph, John C. Mazziotta, Nancy J. Newman, and Scott L. Pomeroy. 2022. Bradley and Daroff’s Neurology in Clinical Practice, 8th ed. Philadelphia: Elsevier. ISBN: 978-0-323-64261-3.
118.
Zasler, Nathan D., Douglas I. Katz, Ross D. Zafonte, eds. 2022. Brain Injury Medicine: Principles and Practice, 3rd ed. New York: Springer Publishing Company. DOI: 10.1891/9780826143051
119.
Ahima, Rexford S., ed. 2016. Metabolic Syndrome: A Comprehensive Textbook. Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-11251-0
120.
Elsevier. 2020. Williams Textbook of Endocrinology, 14th ed. Philadelphia: Elsevier. ISBN: 978-0-323-55596-8.
121.
Teja, Chris, and Ashley Fischer, eds. 2020. Speroff’s Clinical Endocrinology and Gynecologic Infertility, 9th ed. Philadelphia: Wolters Kluwer.
122.
Vernon, J.A., and L.S. Press. 1994. “Characteristics of Tinnitus Induced by Head Injury.” Archives of Otolaryngology—Head & Neck Surgery 120 (5): 547–551. https://doi.org/10.1001/archotol.1994.01880290057010
https://jamanetwork.com/journals/jamaotolaryngology/article-abstract/622242
123.
Folmer, R.L., and S.E. Griest. 2003. “Chronic Tinnitus Resulting from Head or Neck Injuries.” Laryngoscope 113 (5): 821–827. https://doi.org/10.1097/00005537-200305000-00010
https://pubmed.ncbi.nlm.nih.gov/12792317/
​
124.
Folmer, R.L., Griest, S.E., and Martin, W.H. 2001. “Chronic Tinnitus as Phantom Auditory Pain.” Otolaryngology–Head and Neck Surgery 124 (4): 394–400. https://doi.org/10.1067/mhn.2001.114673
https://pubmed.ncbi.nlm.nih.gov/11283496/
125.
Folmer, R.L., and Griest, S.E. 2000. “Tinnitus and Insomnia.” American Journal of Otolaryngology 21 (5): 287–293. https://doi.org/10.1053/ajot.2000.9871
https://pubmed.ncbi.nlm.nih.gov/11032291/
126.
Teixeira, L.S., Granjeiro, R.C., Oliveira, C.A.P., and Bahamad Júnior, F. 2018. “Polysomnography Applied to Patients with Tinnitus: A Review.” International Archives of Otorhinolaryngology 22 (2): 177–180. https://doi.org/10.1055/s-0037-1603809
https://pubmed.ncbi.nlm.nih.gov/29619109/
127.
Guillard, R., Korczowski, L., Léger, D., Congedo, M., and Londero, A. 2023. “REM Sleep Impairment May Underlie Sleep-Driven Modulations of Tinnitus in Sleep Intermittent Tinnitus Subjects: A Controlled Study.” International Journal of Environmental Research and Public Health 20 (8): 5509. https://doi.org/10.3390/ijerph20085509
https://pubmed.ncbi.nlm.nih.gov/37107791/
128.
Fulek, M., Wieckiewicz, M., Szymanska-Chabowska, A., et al. 2024. “Inflammatory Markers and Sleep Architecture in Sleep Bruxism—A Case-Control Study.” Journal of Clinical Medicine 13 (3): 687. https://doi.org/10.3390/jcm13030687
https://pubmed.ncbi.nlm.nih.gov/38337381/
129.
Fulek, M., Wieckiewicz, M., Szymanska-Chabowska, A., et al. 2023. “Systematic Review on the Link between Sleep Bruxism and Systemic Chronic Inflammation.” Brain Sciences 13 (7): 1104. https://doi.org/10.3390/brainsci13071104
https://pubmed.ncbi.nlm.nih.gov/37509035/
130.
Michalek-Zrabkowska, M., Martynowicz, H., Wieckiewicz, M., et al. 2021. “Cardiovascular Implications of Sleep Bruxism—A Systematic Review with Narrative Summary and Future Perspectives.” Journal of Clinical Medicine 10 (11): 2245. https://doi.org/10.3390/jcm10112245
https://pubmed.ncbi.nlm.nih.gov/34064229/
131.
Bajwa, N.M., Kesavan, C., and Mohan, S. 2018. “Long-Term Consequences of Traumatic Brain Injury on Bone Metabolism.” Frontiers in Neurology 9: 115. https://doi.org/10.3389/fneur.2018.00115
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5845384/
132.
Watanabe, T., Bell, K., and DiTommaso, C. 2024. “Spasticity and Traumatic Brain Injury.” Model Systems Knowledge Translation Center (MSKTC). https://msktc.org/tbi/factsheets/spasticity
133.
Brown, S., Hawker, G., Beaton, D., and Colantonio, A. 2011. “Long-Term Musculoskeletal Complaints After Traumatic Brain Injury.” Brain Injury 25 (5): 453–461. https://doi.org/10.3109/02699052.2011.556581
https://pubmed.ncbi.nlm.nih.gov/21401368/
134.
Lynall, R.C., Wasser, J.G., Brooks, D.I., et al. 2023. “Investigating Post-Mild Traumatic Brain Injury Neuromuscular Function and Musculoskeletal Injury Risk: A Protocol for a Prospective, Observational, Case–Controlled Study in Service Members and Active Individuals.” BMJ Open 13 (3): e069404. https://doi.org/10.1136/bmjopen-2022-069404
